Главная
Материалы
Мембранные конструкции
Железобетон
Камень
Сталь
Пластмасса
Эксплуатация зданий
Конструкии
Стальные канаты
Усиление конструкций
Расчет высотных зданий
Строительство
Строительная механика
Пространство
Строительное производство
Железобетонные сооружения
Монтаж винилового сайдинга
Сметное дело
Отопление и вентиляция
Проектная продукция
Ремонт
Гидроизоляция
Расчет фундамента
Полочка на кронштейнах
Украшаем стены ванной
Самодельные станки
Справочник строителя
Советы по строительству
Как осуществляется строительство промышленных теплиц? Тенденции в строительстве складских помещений Что нужно знать при проектировании промышленных зданий? |
Строительные лаги Справочник ческим побуждением движения воздуха при помощи вентиляторов (вентиляторные системы). В гравитационной системе используется различие в плотности воздуха, нагретого до различной температуры. Как и в водяной гравитационной системе, при неоднородном распределении плотности возникает естественное движение воздуха. В вентиляторной системе используется электровентилятор для повышения давления воздуха и создается вынужденное движение воздуха в дополнение к гравитационному. Нагревание воздуха, служащего теплоносителем, от температуры помещения до температуры, обычно не превышающей 70 °С, происходит в специальных отопительных приборах - калориферах. Калориферы изнутри могут обогреваться паром, водой, электричеством или горячими газами; система воздушного отопления соответственно называется водо-воздушной, паровоздушной, электровоздушной, газовоздушной. По радиусу действия воздушное отопление может относиться к местным (рис. 1.10, а) и центральным (рис. 1.10,6) системам. В местной системе воздух нагревается в калорифере /, находящемся в отапливаемом помещении. В центральной системе калорифер / размещается в отдельной камере - тепловом центре, воздух с температурой подводится к калориферу по обратным воздуховодам 2, горячий воздух с температурой перемещается в помещения по подающим воздуховодам 3. § 7, ХАРАКТЕРИСТИКА ТЕПЛОНОСИТЕЛЕЙ ДЛЯ ОТОПЛЕНИЯ Теплоносителем для отопления может быть любая жидкая или газообразная среда, обладающая способностью аккумулировать тепло и изменять свои основные теплотехнические показатели, а также достаточно подвижная и дешевая. Вместе с тем теплоноситель должен способствовать выполнению требований, предъявляемых к отопительной установке (см. § 5). Для отопления зданий и сооружений в настоящее время используют воду, водяной пар, атмосферный воздух, горячие Газы. Органические теплоносители, температура кипения которых при атмосферном давлении превышает 250° С (полифенилы и др.), чаще применяются в специальных высокотемпературных установках. Дадим сравнительную характеристику этим теплоносителям, которая отражает требования, предъявляемые к отопительной установке, а также свойства самих теплоносителей. Газы, образующиеся при сгорании твердого, жидкого или газообразного топлива, имеют сравнительно Высокую температуру и применимы для отопления в тех случаях, когдав соответствии с санитарно-гигиеническими требованиями удается ограничить температуру теплоотдающей поверхности приборов. Из-за высокой температуры продуктов сгорания топлива возрастают бесполезные потери тепла при транспортировании. Выпуск продуктов сгорания топлива в отапливаемые помещения ухудшает состояние их воздушной среды и в большинстве случаев недопустим, а удаление их наружу по каналам усложняет систему отопления. Область использования продуктов сгорания как теплоносителя ограничена системами местного отопления с такими отопительными установками, как отопительные печи, газовые калориферы и т. п. Наибольшее распространение в качестве теплоносителей в системах отопления имеют вода, пар и воздух. Сопоставим эти теплоносители как по физическим свойствам, так и по технико-экономическим, санитарно-гигиеническим и эксплуатационным показателям, важным для выбора системы отопления. Прежде всего перечислим физические свойства каждого из теплоносителей, отражающиеся на конструкции и действии системы отопления. Свойства воды: большие теплоемкость и плотность, несжимаемость, расширение прл нагревании с уменьшением плотности, повышение температуры кипения при увеличении давления, уменьшение абсорбции воздуха при нагревании и снижении давления. Свойства пара: высокая подвижность, малая плотность, повышение температуры и плотности при увеличении давления, большое теплосодержание за счет тепла фазового превращения (см. табл. 1.2). Свойства-воздуха: малая теплоемкость и плотность, легкая подвижность, уменьшение плотности при нагревании. Существенным технико-экономическим показателем является масса металла, расходуемого при том или ином теплоносителе на изготовление теплообменника, отопительных приборов и теплопроводов, влияющая на стоимость устройства и эксплуатации системы отопления. При теплоносителе воздухе площадь нагревательной поверхности калорифера уменьшается по сравнению с площадью отопительных приборов при двух других теплоносителях. При теплоносителе паре площадь (и масса) отопительных приборов меньше, чем при теплоносителе воде, что объясняется более высокой температурой паровых приборов. Если при паре температура теплоносителя в приборе равна температуре насыщенного пара (например, 150 "С), то при воде эта температура может быть равна полусумме температуры воды, входящей и выходящей из прибора [например, (150-f70)0,5 = 110 °С]. В этом примере соотношение площадей нагревательной поверхности паровых и водяных приборов приблизительно равняется (110 - 20): (150 - 20) = 9 :13 (20 °С - температура воздуха в помещении). Расход металла на теплопроводы возрастает с увеличением площади их поперечного сечения. Определим соотношение площадей поперечного сечения теплопроводов, по которым транспортируются вода, пар и воздух в объемах, необходимых для передачи помещению одинакового количе- Таблица 1.3 Сравнение параметров основных теплоносителей для отопления
• Удельное тепло конденсация, кДж/кг (ккал/кг). ства тепла. Примем, что для отопления используется вода, температура которой снижается от 150 до 70 °С, пар, имеющий избыточное давление 0,37 МПа или 3,8 кгс/см (см. табл. 1.2), и воздух, охлаждающийся от предельно допустимой нормами температуры 70 °С до температуры помещения 15 °С. Результаты расчетов сведем в табл. 1.3. Как видно из табл. 1.3, площади поперечных сечений водоводов и паропроводов близки; сечение воздуховодов, пропускающих равное количество тепла, несоизмеримо больше. Поэтому расход металла на воздуховоды увеличивается в несколько раз (даже если выполнить их из тонколистовой стали). Аналогичные расчеты при использовании для отопления низкотемпературной воды (95 °С) и пара низкого избыточного давления 0,02 МПа (0,2 кгс/см) выявляют подобную закономерность - для воздуха необходима площадь поперечного сечения теплопровода приблизительно в 100 раз большая, чем для воды или пара. Это связано со способностью воды аккумулировать значительное количество тепла в единице объема, свойством пара перемещаться с высокой скоростью и малой теплоакку-муляционной способностью воздуха. Таким образом, по площади поперечного сечения теплопроводов воздух является наименее выгодным теплоносителем. При значительной длине воздуховодов, когда из-за малой теплоемкости и увеличенной теплоотдающей поверхности воздух заметно охлаждается в пути, применять его в качестве теплоносителя нецелесообразно. Поэтому для теплоснаб-лсения используется не воздух, а вода или пар. Напомним, что в СССР наибольшее распространение получила водяная теплофикация на базе строительства теплоэлектроцентралей (ТЭЦ). Сравним также теплоносители воду, пар и воздух по санитарно-гигиеническим показателям и в первую очередь по температурным условиям, создающимся в помещении при использовании того или иного теплоносителя. Воздух как малотеплоемкий теплоноситель полностью отвечает требованию постоянно поддерживать в помещении определенную температуру независимо от колебания температуры наружного воздуха. Температура воды, как и теплоносителя воздуха, также может изменяться в широких пределах, однако из-за тепловой инерции отопительных приборов с водой возможно некоторое изменение температуры помещения даже при автоматическом регулировании теплопередачи приборов. Планомерное изменение температуры теплоносителей воздуха и воды в зависимости от температуры наружного воздуха (с которой связаны теилопотери помещений), называемое качественным регулированием, практически невозможно при теплоносителе паре. Температура насыщенного пара определяется, как известно, его давлением. При значительном изменении давления пара в системе отопления не происходит заметного изменения его температуры, а следовательно, теплопередачи отопительных приборов. Например, при снижении избыточного давления с 0,05 до 0,005 МПа, т. е. в 10 раз, температура пара понижается с 110,8 до 100,4 °С, т. е. только на 10%. Для уменьшения теплопередачи приборов приходится периодически их выключать, что вызывает колебание температуры помещений, противоречащее гигиеническому требованию. Другое санитарно-гигиеническое требование ограничивать температуру поверхности отопительных приборов обусловлено явлением разложения и сухой возгонки органической пыли, сопровождающимся выделением вредных веществ, в частности окиси углерода. Разложение пыли 0 1 2 [ 3 ] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |